\(\int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [127]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 66 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*a*(A-B)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*(A+B)*(
cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*A*sin(d*x+c)/d/cos(
d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.23 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3047, 3100, 2827, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(-2*a*(A - B)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A + B)*EllipticF[(c + d*x)/2, 2])/d + (2*a*A*Sin[c + d*x])/
(d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {a A+(a A+a B) \cos (c+d x)+a B \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {\frac {1}{2} a (A+B)-\frac {1}{2} a (A-B) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}-(a (A-B)) \int \sqrt {\cos (c+d x)} \, dx+(a (A+B)) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = -\frac {2 a (A-B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a (A+B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.32 (sec) , antiderivative size = 256, normalized size of antiderivative = 3.88 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a (1+\cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (\frac {\csc (c) \left (-3 (A-B) \cos (c-d x-\arctan (\tan (c))) \sec (c)-(A-B) \cos (c+d x+\arctan (\tan (c))) \sec (c)+2 ((2 A-B) \cos (d x)-B \cos (2 c+d x)) \sqrt {\sec ^2(c)}\right )}{\sqrt {\sec ^2(c)}}-4 (A+B) \cos (c+d x) \sqrt {\cos ^2(d x-\arctan (\cot (c)))} \sqrt {\csc ^2(c)} \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec (d x-\arctan (\cot (c))) \sin (c)+\frac {2 (A-B) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sec (c) \sin (d x+\arctan (\tan (c)))}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2(d x+\arctan (\tan (c)))}}\right )}{4 d \sqrt {\cos (c+d x)}} \]

[In]

Integrate[((a + a*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*((Csc[c]*(-3*(A - B)*Cos[c - d*x - ArcTan[Tan[c]]]*Sec[c] - (A - B)*C
os[c + d*x + ArcTan[Tan[c]]]*Sec[c] + 2*((2*A - B)*Cos[d*x] - B*Cos[2*c + d*x])*Sqrt[Sec[c]^2]))/Sqrt[Sec[c]^2
] - 4*(A + B)*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4
}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + (2*(A - B)*HypergeometricPFQ[{-1/2, -1/4},
{3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sec[c]*Sin[d*x + ArcTan[Tan[c]]])/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x + ArcTan[Ta
n[c]]]^2])))/(4*d*Sqrt[Cos[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(241\) vs. \(2(116)=232\).

Time = 5.78 (sec) , antiderivative size = 242, normalized size of antiderivative = 3.67

method result size
default \(\frac {2 a \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(242\)
parts \(\frac {2 \left (a A +B a \right ) \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}+\frac {2 B a \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(343\)

[In]

int((a+cos(d*x+c)*a)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*a*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos
(1/2*d*x+1/2*c),2^(1/2))+B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x
+1/2*c),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 173, normalized size of antiderivative = 2.62 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} {\left (A + B\right )} a \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - i \, \sqrt {2} {\left (A - B\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + i \, \sqrt {2} {\left (A - B\right )} a \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, A a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{d \cos \left (d x + c\right )} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*(A + B)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*(A +
B)*a*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - I*sqrt(2)*(A - B)*a*cos(d*x + c)
*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + I*sqrt(2)*(A - B)*a*cos(d
*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*A*a*sqrt(cos(d*x
 + c))*sin(d*x + c))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 1.16 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.36 \[ \int \frac {(a+a \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,A\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\left (\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )+\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x)))/cos(c + d*x)^(3/2),x)

[Out]

(2*A*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a*(ellipticE(c/2 + (d*x)/2, 2) + ellipticF(c/2 + (d*x)/2, 2)))/d
+ (2*A*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2
))